

ISL71841SEHEV1Z Evaluation Board User Guide

Description

The <u>ISL71841SEH</u> is a radiation hardened, 32-channel high ESD protected multiplexer that is fabricated using Intersil's proprietary P6SOI (Silicon On Insulator) process technology to mitigate single-event effects and total ionizing dose. It operates with a dual supply voltage ranging from $\pm 10.8V$ to $\pm 16.5V$. This evaluation board is designed to provide easy access to the capabilities of the part.

The evaluation board has a set of toggle switches, which provides a convenient way to address all 32 channels without the need for extra supplies. There's also a BNC input available that will allow you to drive the address pins with a signal generator.

Specifications

This board has been configured and optimized for the following operating conditions:

- $V^+ = +10.8V$ to +16.5V
- V = -10.8V to -16.5V
- V_{REF} = 4.5V to 5.5V

Key Features

- · Jumper selectable input source for each input
- Toggle switches to conveniently select 1 of 32 channels
- · BNC input for dynamic addressing
- . Multiple loading options with jumpers on VOUT
- · Convenient power connection
- · On-board enable switch

References

ISL71841SEH Datasheet

Ordering Information

PART NUMBER	DESCRIPTION
ISL71841SEHEV1Z	Evaluation board for the ISL71841SEH

FIGURE 1. ISL71841SEHEV1Z BLOCK DIAGRAM

ISL71841SEHEV1Z Evaluation Board

FIGURE 2. TOP SIDE

FIGURE 3. BOTTOM SIDE

Operating Range

This board has power supply inputs for V⁺, V and V_{REF}. There's no requirements for sequencing on these supplies, but it is recommended that the supplies come up relatively at the same time. In-line resistors are provided to V⁺ and V with decoupling capacitors close to the part for V⁺, V and VREF. The in-line resistors are 100Ω but can be changed by the user for additional power supply filtering or to limit the rise time of the supply voltages.

The voltage ranges for V $^+$ is +10.8V to +16.5V and the range for V $^-$ is -10.8V to -16.5V. VREF ranges from 4.5V to 5.5V. The ISL71841SEH is a rail-to-rail mux and should be able to accommodate any input signal with a voltage level between or equal to the supplies voltages. VREF is used to set the decoder logic levels.

PCB Layout Guidelines

The ISL71841SEHEV1Z PCB layout has been optimized for ease of testing. When incorporating the ISL71841SEH into a system there are a few guidelines that can ensure optimal electrical and noise performance.

- Analog circuits can conduct noise through paths that connect it to the "outside world". These paths include the V⁺, V⁻, VREF, input to any switch and the output. It is important to make sure these paths are kept away from known noise sources.
- It is recommended to decouple the power supply pins (V⁺, V and VREF) for power supply filtering. If the traces to the supply lines are long, it is recommended to use a larger 1µF capacitor at the point of entry for the supply and a smaller capacitor, like a 0.1µF, close to the part to reduce high frequency perturbations.

Submit Document Feedback 3 Intersil* UG037.0
June 16, 2015

ISL71841SEHEV1Z Circuit Schematic

Bill of Materials

ITEM	QTY	REFERENCE DESIGNATOR	VALUE	TOL (%)	RATING	TYPE	PCB FOOTPRINT	MANUFACTURER	MANUFACTURER PART NUMBER
1	1	C6	100pF	5%	100V	X7R	0805	AVX	08051C101JAT4A
2	3	SP1-SP3	-	-	-	-	CONN	TEKTRONIX	131-4353-00
3	17	TP1-TP17	-	-	-	-	THOLE	KEYSTONE	1514-2
4	1	J28	-	-	-	-	CONN	AMPHENOL	31-5329-52RFX
5	1	J19	-	-	-	-	IN-LINE	Generic	CONN-1X8
6	5	C1-C5	1µF	10%	50V	X7R	0805	MURATA	GRM21BR71H105KA12L
7	6	SW1-SW6	-	-	-	-	SPST	C&K	GT12MSCBETR
8	1	R3	DNP	1%	DNP	-	0805	GENERIC	H2506-DNP-DNP-1
9	6	R4-R9	10 k	1%	1/10W	-	0603	GENERIC	H2511-01002-1/10W1
10	1	R10	49.9k	1%	1/16W	-	0603	GENERIC	H2511-04992-1/16W1
11	2	R1, R2	10	1%	1/10W	-	0805	GENERIC	H2512-00100-1/10W1
12	1	U1	-	-	-	-	CQFP	INTERSIL	ISL71841SEHF/PROTO
13	32	J2-J17, J29-J44	-	-	-	-	THOLE	GENERIC	JUMPER-3-100
14	10	J1, J18, J20-J27	-	-	-	-	THOLE	GENERIC	JUMPER2_100

Board Layout - 4 Layers

FIGURE 5. SILKSCREEN TOP

Board Layout - 4 Layers (Continued)

FIGURE 6. TOP LAYER

FIGURE 7. PCB - INNER LAYER 1 (TOP VIEW)

Board Layout - 4 Layers (Continued)

FIGURE 8. PCB - INNER LAYER 2 (TOP VIEW)

FIGURE 9. PCB - BOTTOM LAYER (TOP VIEW)

Board Layout - 4 Layers (Continued)

FIGURE 10. SILKSCREEN BOTTOM

Typical Performance Curves Unless otherwise noted: V⁺ = +15V, V⁻ = -15V, V_{REF} = 5.0V, T_A = +25°C

FIGURE 11. $r_{DS(0N)}$ vs SWITCH INPUT VOLTAGE (V± = ±12.0V)

FIGURE 12. $r_{DS(ON)}$ vs SWITCH INPUT VOLTAGE (V± = ±15.0V)

Typical Performance Curves Unless otherwise noted: V⁺ = +15V, V⁻ = -15V, V_{REF} = 5.0V, T_A = +25 °C (Continued)

OUT

5V/DIV 1V/DIV EN_BAR t_{DISABLE} = 202.207ns t_{ENABLE} = 352.379ns 500ns/DIV

FIGURE 13. TYPICAL ADDRESS TO OUTPUT DELAY ($V \pm = \pm 15V, \pm 25$ °C)

FIGURE 14. TYPICAL ENABLE TO OUTPUT DELAY (V± = ±15V, +25°C)

FIGURE 15. TYPICAL BREAK BEFORE MAKE DELAY ($V \pm = 15V, +25$ °C)

FIGURE 16. OFF ISOLATION (V± = \pm 15V, +25°C)

Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the document is current before proceeding.

intersil